Primitive of Function under its Derivative
Jump to navigation
Jump to search
Theorem
Let $f$ be a real function which is integrable.
Then:
- $\ds \int \frac {\map {f'} x} {\map f x} \rd x = \ln \size {\map f x} + C$
where $C$ is an arbitrary constant.
Proof
By Integration by Substitution (with appropriate renaming of variables):
- $\ds \int \map g u \rd u = \int \map g {\map f x} \map {f'} x \rd x$
Then:
\(\ds \int \frac {\map {f'} x} {\map f x} \rd x\) | \(=\) | \(\ds \int \frac {\d u} u\) | putting $\map g u := \dfrac 1 u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size u + C\) | Primitive of Reciprocal | |||||||||||
\(\ds \) | \(=\) | \(\ds \ln \size {\map f x} + C\) | Definition of $u$ |
$\blacksquare$
Also presented as
Primitive of Function under its Derivative can also be presented as:
- $\ds \int \frac {\d u} u = \ln \size u + C$
where it is understood that $u$ is a function of $x$.
Examples
Primitive of $\dfrac {2 x - 5} {\paren {x - 2} \paren {x - 3} }$
- $\ds \int \dfrac {2 x - 5} {\paren {x - 2} \paren {x - 3} } = \ln \size {\paren {x - 2} \paren {x - 3} } + C$
Primitive of $\dfrac {2 x + a} {x^2 + a x + b}$
- $\ds \int \dfrac {2 x + a} {x^2 + a x + b} \rd x = \ln \size {x^2 + a x + b} + C$
Sources
- 1944: R.P. Gillespie: Integration (2nd ed.) ... (previous) ... (next): Chapter $\text {II}$: Integration of Elementary Functions: $\S 8$. Change of Variable
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text {II}$. Calculus: Integration
- 1960: Margaret M. Gow: A Course in Pure Mathematics ... (previous) ... (next): Chapter $10$: Integration: $10.4$. Standard integrals: General Rules: $\text {III}$.
- 1971: Wilfred Kaplan and Donald J. Lewis: Calculus and Linear Algebra ... (previous) ... (next): Appendix $\text I$: Table of Indefinite Integrals $7$.
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals