Primitive of Reciprocal of x by Logarithm of x
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\d x} {x \ln x} = \ln \size {\ln x} + C$
Proof
\(\ds z\) | \(=\) | \(\ds \ln x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d z} {\d x}\) | \(=\) | \(\ds \frac 1 x\) | Derivative of Natural Logarithm | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {\d x} {x \ln x}\) | \(=\) | \(\ds \ln \size {\ln x} + C\) | Primitive of Function under its Derivative |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\ln x$: $14.532$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals