Primitive of Hyperbolic Cosine of a x
Jump to navigation
Jump to search
Theorem
- $\ds \int \cosh a x \rd x = \frac {\sinh a x} a + C$
Proof
\(\ds \int \cosh x \rd x\) | \(=\) | \(\ds \sinh x + C\) | Primitive of $\cosh x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \cosh a x \rd x\) | \(=\) | \(\ds \frac 1 a \paren {\sinh a x} + C\) | Primitive of Function of Constant Multiple | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sinh a x} a + C\) | simplifying |
$\blacksquare$
Also see
- Primitive of $\sinh a x$
- Primitive of $\tanh a x$
- Primitive of $\coth a x$
- Primitive of $\sech a x$
- Primitive of $\csch a x$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\cosh a x$: $14.562$
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous) ... (next): Back endpapers: A Brief Table of Integrals: $114$.