Primitive of Hyperbolic Secant of a x/Arctangent of Exponential Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \sech a x \rd x = \frac {2 \map \arctan {e^{a x} } } a + C$


Proof

\(\ds \int \sech x \rd x\) \(=\) \(\ds 2 \map \arctan {e^x} + C\) Primitive of $\sech x$: Arctangent of Exponential Form
\(\ds \leadsto \ \ \) \(\ds \int \sech a x \rd x\) \(=\) \(\ds \frac 1 a \paren {2 \map \arctan {e^{a x} } } + C\) Primitive of Function of Constant Multiple
\(\ds \) \(=\) \(\ds \frac {2 \map \arctan {e^{a x} } } a + C\) simplifying

$\blacksquare$


Sources