Primitive of Hyperbolic Secant Function/Arctangent of Exponential Form
Jump to navigation
Jump to search
Theorem
- $\ds \int \sech x \rd x = 2 \map \arctan {e^x} + C$
Proof
Let:
\(\ds \int \sech x \rd x\) | \(=\) | \(\ds \int \frac 2 {e^x + e^{-x} } \rd x\) | Definition 1 of Hyperbolic Secant | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {2 e^x} {e^{2 x} + 1} \rd x\) | multiplying top and bottom by $e^x$ |
Let:
\(\ds u\) | \(=\) | \(\ds e^x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds u'\) | \(=\) | \(\ds e^x\) | Derivative of Exponential Function |
Then:
\(\ds \int \sech x \rd x\) | \(=\) | \(\ds \int \frac {2 \rd u} {u^2 + 1}\) | Integration by Substitution | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \arctan u + C\) | Primitive of $\dfrac 1 {x^2 + a^2}$: Arctangent Form | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \map \arctan {e^x} + C\) | Definition of $u$ |
$\blacksquare$
Also see
Sources
- 1960: Margaret M. Gow: A Course in Pure Mathematics ... (previous) ... (next): Chapter $10$: Integration: $10.4$. Standard integrals: Other Standard Results: $\text {(xxvii)}$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: General Rules of Integration: $14.29$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Appendix: Table $2$: Integrals
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 16$: Indefinite Integrals: General Rules of Integration: $16.29.$