Primitive of Power of Root of a squared minus x squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \paren {\sqrt {a^2 - x^2} }^n \rd x = \dfrac {x \paren {\sqrt {a^2 - x^2} }^n} {n + 1} - \dfrac {n a^2} {n + 1} \int \paren {\sqrt {a^2 - x^2} }^{n - 2} \rd x$

for $n \ne -1$.


Proof

Let:

\(\ds x\) \(=\) \(\ds a \sin \theta\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \frac {\d x} {\d \theta}\) \(=\) \(\ds a \cos \theta\) Derivative of Sine Function


Also:

\(\ds x\) \(=\) \(\ds a \sin \theta\)
\(\ds \leadsto \ \ \) \(\ds \sqrt {a^2 - x^2}\) \(=\) \(\ds \sqrt {a^2 \paren {1 - \sin^2 \theta} }\)
\(\ds \) \(=\) \(\ds \sqrt {a^2 \cos^2 \theta}\) Sum of Squares of Sine and Cosine
\(\text {(2)}: \quad\) \(\ds \) \(=\) \(\ds a \cos \theta\)


Thus:

\(\ds \int \paren {\sqrt {a^2 - x^2} }^n \rd x\) \(=\) \(\ds \int \paren {a \cos \theta}^n \cdot a \cos \theta \rd \theta\) Integration by Substitution from $(1)$ and $(2)$
\(\ds \) \(=\) \(\ds a^{n + 1} \int \cos^{n + 1} \theta \rd \theta\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds a^{n + 1} \paren {\frac {\sin \theta \cos^n \theta} {n + 1} - \frac n {n + 1} \int \cos^{n - 1} \theta \rd \theta}\) Primitive of $\cos^{n + 1} \theta$ for $n \ne -1$
\(\ds \) \(=\) \(\ds \frac {a \sin \theta \cdot a^n \cos^n \theta} {n + 1} - a^2 \frac n {n + 1} \int a^{n - 2} \cos^{n - 2} \theta \cdot a \cos \theta \rd \theta\) rearranging
\(\ds \) \(=\) \(\ds \frac {x \paren {\sqrt {a^2 - x^2} }^n} {n + 1} - \frac {n a^2} {n + 1} \int \paren {\sqrt {a^2 - x^2} }^{n - 2} \rd x\) substituting for $\sinh \theta$ and $\cosh \theta$

$\blacksquare$


Also see

For $n = -1$, use Primitive of Reciprocal of Root of a squared minus x squared