# Primitive of Power of x by Arccosecant of x over a

## Theorem

$\displaystyle \int x^m \arccsc \frac x a \rd x = \begin{cases} \displaystyle \frac {x^{m + 1} } {m + 1} \arccsc \frac x a + \frac a {m + 1} \int \frac {x^m \rd x} {\sqrt {x^2 - a^2} } + C & : 0 < \arccsc \dfrac x a < \dfrac \pi 2 \\ \displaystyle \frac {x^{m + 1} } {m + 1} \arccsc \frac x a - \frac a {m + 1} \int \frac {x^m \rd x} {\sqrt {x^2 - a^2} } + C & : -\dfrac \pi 2 < \arccsc \dfrac x a < 0 \\ \end{cases}$

## Proof

With a view to expressing the primitive in the form:

$\displaystyle \int u \frac {\rd v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

 $\displaystyle u$ $=$ $\displaystyle \arccsc \frac x a$ $\displaystyle \leadsto \ \$ $\displaystyle \frac {\d u} {\d x}$ $=$ $\displaystyle \begin {cases} \dfrac {-a} {x \sqrt {x^2 - a^2} } & : 0 < \arccsc \dfrac x a < \dfrac \pi 2 \\ \dfrac a {x \sqrt {x^2 - a^2} } & : -\dfrac \pi 2 < \arccsc \dfrac x a < 0 \\ \end{cases}$ Derivative of $\arccsc \dfrac x a$

and let:

 $\displaystyle \frac {\d v} {\d x}$ $=$ $\displaystyle x^m$ $\displaystyle \leadsto \ \$ $\displaystyle v$ $=$ $\displaystyle \frac {x^{m + 1} } {m + 1}$ Primitive of Power

First let $\arccsc \dfrac x a$ be in the interval $\openint 0 {\dfrac \pi 2}$.

Then:

 $\displaystyle \int x^m \arccsc \frac x a \rd x$ $=$ $\displaystyle \frac {x^{m + 1} } {m + 1} \arccsc \frac x a - \int \frac {x^{m + 1} } {m + 1} \paren {\frac {-a} {x \sqrt {x^2 - a^2} } } \rd x + C$ Integration by Parts $\displaystyle$ $=$ $\displaystyle \frac {x^{m + 1} } {m + 1} \arccsc \frac x a + \frac a {m + 1} \int \frac {x^m \rd x} {\sqrt {x^2 - a^2} } + C$ Primitive of Constant Multiple of Function

Similarly, let $\arccsc \dfrac x a$ be in the interval $\openint {-\dfrac \pi 2} 0$.

Then:

 $\displaystyle \int x^m \arccsc \frac x a \rd x$ $=$ $\displaystyle \frac {x^{m + 1} } {m + 1} \arccsc \frac x a - \int \frac {x^{m + 1} } {m + 1} \paren {\frac a {x \sqrt {x^2 - a^2} } } \rd x + C$ Integration by Parts $\displaystyle$ $=$ $\displaystyle \frac {x^{m + 1} } {m + 1} \arccsc \frac x a - \frac a {m + 1} \int \frac {x^m \rd x} {\sqrt {x^2 - a^2} } + C$ Primitive of Constant Multiple of Function

$\blacksquare$