Primitive of Power of x by Arccosecant of x over a
Jump to navigation
Jump to search
Theorem
- $\ds \int x^m \arccsc \frac x a \rd x = \begin {cases} \ds \dfrac {x^{m + 1} } {m + 1} \arccsc \dfrac x a + \dfrac a {m + 1} \int \dfrac {x^m \rd x} {\sqrt {x^2 - a^2} } & : 0 < \arccsc \dfrac x a < \dfrac \pi 2 \\ \\ \ds \dfrac {x^{m + 1} } {m + 1} \arccsc \dfrac x a - \dfrac a {m + 1} \int \dfrac {x^m \rd x} {\sqrt {x^2 - a^2} } & : -\dfrac \pi 2 < \arccsc \dfrac x a < 0 \end {cases}$
Proof 1
Recall:
\(\text {(1)}: \quad\) | \(\ds \int x^m \arccsc x \rd x\) | \(=\) | \(\ds \begin {cases} \ds \dfrac {x^{m + 1} } {m + 1} \arccsc x + \dfrac 1 {m + 1} \int \dfrac {x^m \rd x} {\sqrt {x^2 - 1} } & : 0 < \arccsc x < \dfrac \pi 2 \\ \\ \ds \dfrac {x^{m + 1} } {m + 1} \arccsc x - \dfrac 1 {m + 1} \int \dfrac {x^m \rd x} {\sqrt {x^2 - 1} } & : -\dfrac \pi 2 < \arccsc x < 0 \\ \end {cases} \) | Primitive of $x^m \arccsc x$ |
Then:
\(\ds \int x^m \arccsc \frac x a \rd x\) | \(=\) | \(\ds \int a^m \paren {\dfrac x a}^m \arccsc \frac x a \rd x\) | manipulating into appropriate form | |||||||||||
\(\ds \) | \(=\) | \(\ds a^m \int \paren {\dfrac x a}^m \arccsc \frac x a \rd x\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds a^m \paren {\dfrac 1 {1 / a} \paren {\begin {cases} \dfrac 1 {m + 1} \paren {\dfrac x a}^{m + 1} \arccsc \dfrac x a + \dfrac 1 {m + 1} \ds \int \paren {\dfrac x a}^m \frac {\d x} {\sqrt {\paren {\dfrac x a}^2 - 1} } & : 0 < \arccsc \dfrac x a < \dfrac \pi 2 \\ \\ \dfrac 1 {m + 1} \paren {\dfrac x a}^{m + 1} \arccsc \dfrac x a - \dfrac 1 {m + 1} \ds \int \paren {\dfrac x a}^m \frac {\d x} {\sqrt {\paren {\dfrac x a}^2 - 1} } & : -\dfrac \pi 2 < \arccsc \dfrac x a < 0 \end {cases} } } \) | Primitive of Function of Constant Multiple, from $(1)$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \begin {cases} \dfrac {x^{m + 1} } {m + 1} \arccsc \dfrac x a + \dfrac a {m + 1} \ds \int \dfrac {x^m \rd x} {\sqrt {x^2 - a^2} } & : 0 < \arccsc \dfrac x a < \dfrac \pi 2 \\ \\ \dfrac {x^{m + 1} } {m + 1} \arccsc \dfrac x a - \dfrac a {m + 1} \ds \int \dfrac {x^m \rd x} {\sqrt {x^2 - a^2} } & : -\dfrac \pi 2 < \arccsc \dfrac x a < 0 \end {cases} \) | simplifying |
$\blacksquare$
Proof 2
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\rd v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \arccsc \frac x a\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \begin {cases} \dfrac {-a} {x \sqrt {x^2 - a^2} } & : 0 < \arccsc \dfrac x a < \dfrac \pi 2 \\ \dfrac a {x \sqrt {x^2 - a^2} } & : -\dfrac \pi 2 < \arccsc \dfrac x a < 0 \\ \end{cases} \) | Derivative of $\arccsc \dfrac x a$ |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds x^m\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds \frac {x^{m + 1} } {m + 1}\) | Primitive of Power |
First let $\arccsc \dfrac x a$ be in the interval $\openint 0 {\dfrac \pi 2}$.
Then:
\(\ds \int x^m \arccsc \frac x a \rd x\) | \(=\) | \(\ds \frac {x^{m + 1} } {m + 1} \arccsc \frac x a - \int \frac {x^{m + 1} } {m + 1} \paren {\frac {-a} {x \sqrt {x^2 - a^2} } } \rd x\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^{m + 1} } {m + 1} \arccsc \frac x a + \frac a {m + 1} \int \frac {x^m \rd x} {\sqrt {x^2 - a^2} }\) | Primitive of Constant Multiple of Function |
Similarly, let $\arccsc \dfrac x a$ be in the interval $\openint {-\dfrac \pi 2} 0$.
Then:
\(\ds \int x^m \arccsc \frac x a \rd x\) | \(=\) | \(\ds \frac {x^{m + 1} } {m + 1} \arccsc \frac x a - \int \frac {x^{m + 1} } {m + 1} \paren {\frac a {x \sqrt {x^2 - a^2} } } \rd x\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^{m + 1} } {m + 1} \arccsc \frac x a - \frac a {m + 1} \int \frac {x^m \rd x} {\sqrt {x^2 - a^2} }\) | Primitive of Constant Multiple of Function |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving Inverse Trigonometric Functions: $14.508$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(24)$ Integrals Involving Inverse Trigonometric Functions: $17.24.38.$