Primitive of Power of x by Arccosine of x over a/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x^m \arccos \frac x a \rd x = \frac {x^{m + 1} } {m + 1} \arccos \frac x a + \frac 1 {m + 1} \int \frac {x^{m + 1} \rd x} {\sqrt {a^2 - x^2} }$


Proof

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds \arccos \frac x a\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac {-1} {\sqrt {a^2 - x^2} }\) Derivative of $\arccos \dfrac x a$


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds x^m\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds \frac {x^{m + 1} } {m + 1}\) Primitive of Power


Then:

\(\ds \int x^m \arccos \frac x a \rd x\) \(=\) \(\ds \frac {x^{m + 1} } {m + 1} \arccos \frac x a - \int \frac {x^{m + 1} } {m + 1} \paren {\frac {-1} {\sqrt {a^2 - x^2} } } \rd x\) Integration by Parts
\(\ds \) \(=\) \(\ds \frac {x^{m + 1} } {m + 1} \arccos \frac x a + \frac 1 {m + 1} \int \frac {x^{m + 1} \rd x} {\sqrt {a^2 - x^2} }\) Primitive of Constant Multiple of Function

$\blacksquare$


Also see