Primitive of Power of x by Arcsine of x over a/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x^m \arcsin \frac x a \rd x = \frac {x^{m + 1} } {m + 1} \arcsin \frac x a - \frac 1 {m + 1} \int \frac {x^{m + 1} \rd x} {\sqrt {a^2 - x^2} }$


Proof

Recall:

\(\text {(1)}: \quad\) \(\ds \int x^m \arcsin x \rd x\) \(=\) \(\ds \frac {x^{m + 1} } {m + 1} \arcsin x - \frac 1 {m + 1} \int \frac {x^{m + 1} \rd x} {\sqrt {1 - x^2} }\) Primitive of $x^m \arcsin x$


Then:

\(\ds \int x^m \arcsin \frac x a \rd x\) \(=\) \(\ds \int a^m \paren {\dfrac x a}^m \arcsin \frac x a \rd x\) manipulating into appropriate form
\(\ds \) \(=\) \(\ds a^m \int \paren {\dfrac x a}^m \arcsin \frac x a \rd x\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds a^m \paren {\dfrac 1 {1 / a} \paren {\frac 1 {m + 1} \paren {\dfrac x a}^{m + 1} \arcsin \frac x a - \frac 1 {m + 1} \int \paren {\dfrac x a}^{m + 1} \frac {\d x} {\sqrt {1 - \paren {\dfrac x a}^2} } } }\) Primitive of Function of Constant Multiple, from $(1)$
\(\ds \) \(=\) \(\ds \frac {x^{m + 1} } {m + 1} \arcsin \frac x a - \frac 1 {m + 1} \int \frac {x^{m + 1} \rd x} {\sqrt {a^2 - x^2} }\) simplifying

$\blacksquare$


Also see