Primitive of Power of x by Arctangent of x over a/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x^m \arctan \frac x a \rd x = \frac {x^{m + 1} } {m + 1} \arctan \frac x a - \frac a {m + 1} \int \frac {x^{m + 1} \rd x} {x^2 + a^2}$


Proof

Recall:

\(\text {(1)}: \quad\) \(\ds \int x^m \arctan x \rd x\) \(=\) \(\ds \frac {x^{m + 1} } {m + 1} \arctan x - \frac 1 {m + 1} \int \frac {x^{m + 1} \rd x} {x^2 + 1}\) Primitive of $x^m \arctan x$


Then:

\(\ds \int x^m \arctan \frac x a \rd x\) \(=\) \(\ds \int a^m \paren {\dfrac x a}^m \arctan \frac x a \rd x\) manipulating into appropriate form
\(\ds \) \(=\) \(\ds a^m \int \paren {\dfrac x a}^m \arctan \frac x a \rd x\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds a^m \paren {\dfrac 1 {1 / a} \paren {\frac 1 {m + 1} \paren {\dfrac x a}^{m + 1} \arctan \frac x a - \frac 1 {m + 1} \int \paren {\dfrac x a}^{m + 1} \frac {\d x} {\paren {\dfrac x a}^2 + 1} } }\) Primitive of Function of Constant Multiple, from $(1)$
\(\ds \) \(=\) \(\ds \frac {x^{m + 1} } {m + 1} \arctan \frac x a - \frac a {m + 1} \int \frac {x^{m + 1} \rd x} {x^2 + a^2}\) simplifying

$\blacksquare$


Also see