Primitive of Power of x by Arctangent of x over a/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x^m \arctan \frac x a \rd x = \frac {x^{m + 1} } {m + 1} \arctan \frac x a - \frac a {m + 1} \int \frac {x^{m + 1} \rd x} {x^2 + a^2}$


Proof

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds \arctan \frac x a\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac a {x^2 + a^2}\) Derivative of $\arctan \dfrac x a$


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds x^m\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds \frac {x^{m + 1} } {m + 1}\) Primitive of Power


Then:

\(\ds \int x^m \arctan \frac x a \rd x\) \(=\) \(\ds \frac {x^{m + 1} } {m + 1} \arctan \frac x a - \int \frac {x^{m + 1} } {m + 1} \paren {\frac a {x^2 + a^2} } \rd x\) Integration by Parts
\(\ds \) \(=\) \(\ds \frac {x^{m + 1} } {m + 1} \arctan \frac x a - \frac a {m + 1} \int \frac {x^{m + 1} \rd x} {x^2 + a^2}\) Primitive of Constant Multiple of Function

$\blacksquare$


Also see