Primitive of Power of x by Hyperbolic Cosine of a x
Jump to navigation
Jump to search
Theorem
- $\ds \int x^m \cosh a x \rd x = \frac {x^m \sinh a x} a - \frac m a \int x^{m - 1} \sinh a x \rd x + C$
Proof
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds x^m\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds m x^{m - 1}\) | Derivative of Power |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds \cosh a x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds \frac {\sinh a x} a\) | Primitive of $\cosh a x$ |
Then:
\(\ds \int x^m \cosh a x \rd x\) | \(=\) | \(\ds x^m \paren {\frac {\sinh a x} a} - \int \paren {\frac {\sinh a x} a} \paren {m x^{m - 1} } \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^m \sinh a x} a - \frac m a \int x^{m - 1} \sinh a x \rd x + C\) | Primitive of Constant Multiple of Function |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\cosh a x$: $14.585$
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous) ... (next): Back endpapers: A Brief Table of Integrals: $122$.
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(28)$ Integrals Involving $\cosh a x$: $17.28.12.$