Primitive of Power of x by Logarithm of x squared plus a squared
Jump to navigation
Jump to search
Theorem
- $\ds \int x^m \map \ln {x^2 + a^2} \rd x = \frac {x^{m + 1} \map \ln {x^2 + a^2} } {m + 1} - \frac 2 {m + 1} \int \frac {x^{m + 2} } {x^2 + a^2} \rd x$
Proof
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds \map \ln {x^2 + a^2}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds \frac {2 x} {x^2 + a^2}\) | Derivative of $\ln x$, Derivative of Power, Chain Rule for Derivatives |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds x^m\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds \frac {x^{m + 1} } {m + 1}\) | Primitive of Power |
Then:
\(\ds \int x^m \map \ln {x^2 + a^2} \rd x\) | \(=\) | \(\ds \frac {x^{m + 1} } {m + 1} \map \ln {x^2 + a^2} - \int \frac {x^{m + 1} } {m + 1} \frac {2 x \rd x} {x^2 + a^2} + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^{m + 1} \map \ln {x^2 + a^2} } {m + 1} - \frac 2 {m + 1} \int \frac {x^{m + 2} } {x^2 + a^2} \d x\) | Primitive of Constant Multiple of Function |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\ln x$: $14.539$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(26)$ Integrals Involving $\ln x$: $17.26.15.$