Primitive of Power of x by Sine of a x/Lemma

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x^m \sin a x \rd x = \frac {- x^m \cos a x} a + \frac m a \int x^{m - 1} \cos a x \rd x$


Proof

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds x^m\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds m x^{m - 1}\) Power Rule for Derivatives


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds \sin a x\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds \frac {-\cos a x} a\) Primitive of $\sin a x$


Then:

\(\ds \int x^m \sin a x \rd x\) \(=\) \(\ds \paren {x^m} \paren {\frac {-\cos a x} a} - \int \paren {\frac {-\cos a x} a} \paren {m x^{m - 1} } \rd x\) Integration by Parts
\(\ds \) \(=\) \(\ds \frac {- x^m \cos a x} a + \frac m a \int x^{m - 1} \cos a x \rd x\) Primitive of Constant Multiple of Function

$\blacksquare$


Also see


Sources