Primitive of Reciprocal of Hyperbolic Cosine of a x plus 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {\cosh a x + 1} = \frac 1 a \tanh \frac {a x} 2 + C$


Proof

\(\ds u\) \(=\) \(\ds \tanh \frac x 2\)
\(\ds \leadsto \ \ \) \(\ds \int \frac {\d x} {1 + \cosh x}\) \(=\) \(\ds \int \frac {\dfrac {2 \rd u} {1 - u^2} } {\dfrac {1 + u^2} {1 - u^2} + 1}\) Hyperbolic Tangent Half-Angle Substitution
\(\ds \) \(=\) \(\ds \int \frac {2 \rd u} {1 + u^2 + \paren {1 - u^2} }\) multiplying top and bottom by $1 - u^2$
\(\ds \) \(=\) \(\ds \int \rd u\) simplifying
\(\ds \) \(=\) \(\ds u + C\) Primitive of Constant
\(\ds \) \(=\) \(\ds \tanh \frac x 2 + C\) substituting for $u$
\(\ds \leadsto \ \ \) \(\ds \int \frac {\d x} {1 + \cosh a x}\) \(=\) \(\ds \frac 1 a \tanh \frac {a x} 2 + C\) Primitive of Function of Constant Multiple

$\blacksquare$


Also see


Sources