Hyperbolic Tangent Half-Angle Substitution

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \map F {\sinh x, \cosh x} \rd x = 2 \int \map F {\frac {2 u} {1 - u^2}, \frac {1 + u^2} {1 - u^2} } \frac {\d u} {1 - u^2}$

where $u = \tanh \dfrac x 2$.


Proof

\(\ds u\) \(=\) \(\ds \tanh \dfrac x 2\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds 2 \tanh^{-1} u\) Definition 1 of Inverse Hyperbolic Tangent
\(\ds \leadsto \ \ \) \(\ds \dfrac {\d x} {\d u}\) \(=\) \(\ds \dfrac 2 {1 - u^2}\) Derivative of Inverse Hyperbolic Tangent and Derivative of Constant Multiple
\(\ds \sinh x\) \(=\) \(\ds \dfrac {2 u} {1 - u^2}\) Hyperbolic Tangent Half-Angle Substitution for Sine
\(\ds \cosh x\) \(=\) \(\ds \dfrac {1 + u^2} {1 - u^2}\) Hyperbolic Tangent Half-Angle Substitution for Cosine

The result follows from Integration by Substitution.

$\blacksquare$


Also see