Primitive of Reciprocal of Power of x by x cubed plus a cubed
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\d x} {x^n \paren {x^3 + a^3} } = \frac {-1} {a^3 \paren {n - 1} x^{n - 1} } - \frac 1 {a^3} \int \frac {\d x} {x^{n - 3} \paren {x^3 + a^3} }$
Proof
\(\ds \int \frac {\d x} {x^n \paren {x^3 + a^3} }\) | \(=\) | \(\ds \int \frac {a^3 \rd x} {a^3 x^n \paren {x^3 + a^3} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {\paren {x^3 + a^3 - x^3} \rd x} {a^3 x^n \paren {x^3 + a^3} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^3} \int \frac {\paren {x^3 + a^3} \rd x} {x^n \paren {x^3 + a^3} } - \frac 1 {a^3} \int \frac {x^3 \rd x} {x^n \paren {x^3 + a^3} }\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^3} \int \frac {\d x} {x^n} - \frac 1 {a^3} \int \frac {x^3 \rd x} {x^n \paren {x^3 + a^3} }\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-1} {a^3 \paren {n - 1} x^{n - 1} } - \frac 1 {a^3} \int \frac {\d x} {x^{n - 3} \paren {x^3 + a^3} }\) | Primitive of Power |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $x^3 + a^3$: $14.310$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(14)$ Integrals Involving $x^3 + a^3$: $17.14.12.$