Primitive of Reciprocal of Root of a x squared plus b x plus c/Examples/2 + 4 x - 3 x^2

From ProofWiki
Jump to navigation Jump to search

Example of Use of Primitive of $\dfrac 1 {\sqrt {a x^2 + b x + c} }$

$\ds \int \dfrac {\d x} {\sqrt {2 + 4 x - 3 x^2} } = \dfrac 1 {\sqrt 3} \map \arcsin {\dfrac {3 x - 2} {10} } + C$


Proof 1

\(\ds \int \dfrac {\d x} {\sqrt {2 + 4 x - 3 x^2} }\) \(=\) \(\ds \dfrac {-1} {\sqrt 3} \map \arcsin {\dfrac {2 \times \paren {-3} x + 4} {\sqrt {\size {4^2 - 4 \times \paren {-3} \times 2} } } } + C\) Primitive of $\dfrac 1 {\sqrt {a x^2 + b x + c} }$: $a < 0$
\(\ds \) \(=\) \(\ds \dfrac {-1} {\sqrt 3} \map \arcsin {\dfrac {-6 x + 4} {\sqrt {16 + 24} } } + C\) simplifying
\(\ds \) \(=\) \(\ds \dfrac 1 {\sqrt 3} \map \arcsin {\dfrac {2 \paren {3 x - 2} } {2 \sqrt {10} } } + C\) Sine Function is Odd
\(\ds \) \(=\) \(\ds \dfrac 1 {\sqrt 3} \map \arcsin {\dfrac {3 x - 2} {\sqrt {10} } } + C\) simplifying

$\blacksquare$


Proof 2

\(\ds \int \dfrac {\d x} {\sqrt {2 + 4 x - 3 x^2} }\) \(=\) \(\ds \dfrac 1 {\sqrt 3} \int \dfrac {\d x} {\sqrt {\frac 2 3 + \frac 4 3 x - x^2} }\)
\(\ds \) \(=\) \(\ds \dfrac 1 {\sqrt 3} \int \dfrac {\d x} {\sqrt {\frac {10} 9 - \paren {x - \frac 2 3}^2} }\) Completing the Square
\(\ds \) \(=\) \(\ds \dfrac 1 {\sqrt 3} \map \arcsin {\dfrac {x - \frac 2 3} {\sqrt {\frac {10} 9} } } + C\) Primitive of $\dfrac 1 {\sqrt {a^2 - x^2} }$
\(\ds \) \(=\) \(\ds \dfrac 1 {\sqrt 3} \map \arcsin {\dfrac {3 x - 2} {\sqrt {10} } } + C\) simplifying

$\blacksquare$