Primitive of Reciprocal of a x + b by p x + q

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {\paren {a x + b} \paren {p x + q} } = \frac 1 {b p - a q} \ln \size {\frac {p x + q} {a x + b} } + C$

where $b p \ne a q$.


Proof

\(\ds \int \frac {\d x} {\paren {a x + b} \paren {p x + q} }\) \(=\) \(\ds \int \paren {\frac {-a} {\paren {b p - a q} \paren {a x + b} } + \frac p {\paren {b p - a q} \paren {p x + q} } } \rd x\) Partial Fraction Expansion
\(\ds \) \(=\) \(\ds \frac 1 {b p - a q} \paren { {-a} \int \frac 1 {a x + b} \rd x + p \int \frac 1 {p x + q} \rd x}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac 1 {b p - a q} \paren {\frac {-a} a \ln \size {a x + b} + \frac p p \ln \size {p x + q} } + C\) Primitive of $\dfrac 1 {a x + b}$
\(\ds \) \(=\) \(\ds \frac 1 {b p - a q} \paren {\ln \size {p x + q} - \ln \size {a x + b} } + C\) simplification
\(\ds \) \(=\) \(\ds \frac 1 {b p - a q} \ln \size {\frac {p x + q} {a x + b} } + C\) Difference of Logarithms

$\blacksquare$


Sources