Primitive of Reciprocal of x by Power of a squared minus x squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\d x} {x \paren {a^2 - x^2}^n} = \frac 1 {2 \paren {n - 1} a^2 \paren {a^2 - x^2}^{n - 1} } + \frac 1 {a^2} \int \frac {\d x} {x \paren {a^2 - x^2}^{n - 1} }$
for $x^2 < a^2$.
Proof
Let:
\(\ds z\) | \(=\) | \(\ds a^2 - x^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d z} {\d x}\) | \(=\) | \(\ds -2 x\) | Power Rule for Derivatives | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {\d x} {x \paren {a^2 - x^2}^n}\) | \(=\) | \(\ds \int \frac {\d z} {-2 x^2 z^n}\) | Integration by Substitution | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \int \frac {\d z} {\paren {z - a^2} z^n}\) | Primitive of Constant Multiple of Function and substituting for $x^2$ |
From Primitive of $x^m \paren {a x + b}^n$: Increment of Power of $x$:
- $\ds \int x^m \paren {a x + b}^n \rd x = \frac {x^{m + 1} \paren {a x + b}^{n + 1} } {\paren {m + 1} b} - \frac {\paren {m + n + 2} a} {\paren {m + 1} b} \int x^{m + 1} \paren {a x + b}^n \rd x$
Let:
\(\ds a\) | \(:=\) | \(\ds 1\) | ||||||||||||
\(\ds b\) | \(:=\) | \(\ds -a^2\) | ||||||||||||
\(\ds x\) | \(:=\) | \(\ds z\) | ||||||||||||
\(\ds m\) | \(:=\) | \(\ds -n\) | ||||||||||||
\(\ds n\) | \(:=\) | \(\ds -1\) |
Then:
\(\ds \int \frac {\d x} {x \paren {x^2 - a^2}^n}\) | \(=\) | \(\ds \frac 1 2 \int \frac {\d z} {\paren {z - a^2} z^n}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \paren {\frac {z^{-n + 1} \paren {z - a^2}^{-1 + 1} } {\paren {-n + 1} \paren {-a^2} } - \frac {\paren {-n + \paren {-1} + 2} } {\paren {-n + 1} \paren {-a^2} } \int z^{-n + 1} \paren {z - a^2}^{-1} \rd z}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 \paren {n - 1} a^2 z^{n-1} } + \frac 1 {2 a^2} \int \frac {\d z} {z^{n - 1} \paren {z - a^2} }\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 \paren {n - 1} a^2 \paren {a^2 - x^2}^{n - 1} } + \frac 1 {2 a^2} \int \frac {2 x \rd x} {x^2 \paren {a^2 - x^2}^{n - 1} }\) | substituting for $z$ and $\d z$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 \paren {n - 1} a^2 \paren {a^2 - x^2}^{n - 1} } + \frac 1 {a^2} \int \frac {\d x} {x \paren {a^2 - x^2}^{n - 1} }\) | simplifying |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $a^2 - x^2$, $x^2 < a^2$: $14.179$