Primitive of x over Power of a squared minus x squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {x \rd x} {\paren {a^2 - x^2}^n} = \frac 1 {2 \paren {n - 1} \paren {a^2 - x^2}^{n - 1} }$

for $x^2 < a^2$.


Proof

Let:

\(\ds z\) \(=\) \(\ds a^2 - x^2\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d z} {\d x}\) \(=\) \(\ds -2 x\) Power Rule for Derivatives
\(\ds \leadsto \ \ \) \(\ds \int \frac {x \rd x} {\paren {a^2 - x^2}^n}\) \(=\) \(\ds \int \frac {\d z} {- 2 z^n}\) Integration by Substitution
\(\ds \) \(=\) \(\ds \frac {-1} 2 \int z^{-n} \rd z\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds \frac {-1} 2 \frac {z^{-n + 1} } {-n + 1} + C\) Primitive of Power
\(\ds \) \(=\) \(\ds \frac 1 {2 \paren {n - 1} z^{n - 1} } + C\) simplifying
\(\ds \) \(=\) \(\ds \frac 1 {2 \paren {n - 1} \paren {a^2 - x^2}^{n - 1} } + C\) substituting for $z$

$\blacksquare$


Also see


Sources