Primitive of Reciprocal of x by Root of 2 a x minus x squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \dfrac 1 {x \sqrt {2 a x - x^2} } \rd x = -\dfrac 1 a \sqrt {\dfrac {2 a - x} x} + C$


Proof

Recall Primitive of $\dfrac 1 {\paren {p x + q} \sqrt {\paren {a x + b} \paren {p x + q} } }$:

$\ds \int \frac {\d x} {\paren {p x + q} \sqrt {\paren {a x + b} \paren {p x + q} } } = \frac {2 \sqrt {a x + b} } {\paren {a q - b p} \sqrt {p x + q} } + C$


Then:

\(\ds \int \dfrac 1 {x \sqrt {2 a x - x^2} } \rd x\) \(=\) \(\ds \int \dfrac 1 {x \sqrt {x \paren {2 a - x} } } \rd x\) manipulating subject into correct form
\(\ds \) \(=\) \(\ds \frac {2 \sqrt {2 a - x} } {\paren {\paren {-1} \times 0 - 2 a \times 1} \sqrt {1 \times x + 0} } + C\) $p \gets 1$, $q \gets 0$, $a \gets -1$, $b \gets 2 a$
\(\ds \) \(=\) \(\ds \frac {2 \sqrt {2 a - x} } {\paren {-2 a} \sqrt x} + C\) simplification
\(\ds \) \(=\) \(\ds -\dfrac 1 a \sqrt {\dfrac {2 a - x} x} + C\) simplification

$\blacksquare$


Sources