Primitive of x over Root of 2 a x minus x squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \dfrac x {\sqrt {2 a x - x^2} } \rd x = a \arcsin \dfrac {x - a} a - \sqrt {2 a x - x^2} + C$


Proof

Let $u := x - a$.

Then:

$\dfrac {\d u} {\d x} = 1$

and:

$x = u + a$


Then:

\(\ds 2 a x - x^2\) \(=\) \(\ds 2 a \paren {u + a} - \paren {u + a}^2\)
\(\ds \) \(=\) \(\ds 2 a u + 2 a^2 - u^2 - 2 a u - a^2\)
\(\ds \) \(=\) \(\ds a^2 - u^2\)


and we have:

\(\ds \int \dfrac x {\sqrt {2 a x - x^2} } \rd x\) \(=\) \(\ds \int \dfrac {u + a} {\sqrt {a^2 - u^2} } \rd u\)
\(\ds \) \(=\) \(\ds \int \dfrac u {\sqrt {a^2 - u^2} } \rd u + a \int \dfrac 1 {\sqrt {a^2 - u^2} } \rd u\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds -\sqrt {a^2 - u^2} + a \paren {\arcsin \frac x a}\) Primitive of $\dfrac u {\sqrt {a^2 - u^2} }$ and Primitive of $\dfrac 1 {\sqrt {a^2 - u^2} }$: Arcsine Form
\(\ds \) \(=\) \(\ds a \arcsin \dfrac {x - a} a - \sqrt {2 a x - x^2} + C\) substituting for $u$ and simplifying

$\blacksquare$


Sources