Primitive of Reciprocal of x cubed plus a cubed/Lemma

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $x^3 + a^3$

$\ds \int \frac {\d x} {x^2 - a x + a^2} = \frac 2 {a \sqrt 3} \map \arctan {\frac {2 x - a} {a \sqrt 3} }$


Proof

The discriminant of $x^2 - a x + a^2$ is:

\(\ds \map {\mathrm {Disc} } {x^2 - a x + a^2}\) \(=\) \(\ds \paren {-a}^2 - 4 \times 1 \times a^2\)
\(\ds \) \(=\) \(\ds a^2 - 4 a^2\)
\(\ds \) \(=\) \(\ds -3 a^2\)
\(\ds \) \(<\) \(\ds 0\)

Thus:

\(\ds \int \frac {\d x} {x^2 - a x + a^2}\) \(=\) \(\ds \frac 2 {\sqrt {4 a^2 - \paren {-a}^2} } \map \arctan {\frac {2 x - a} {\sqrt {4 a^2 - \paren {-a}^2} } }\) Primitive of $\dfrac 1 {a x^2 + b x + c}$
\(\ds \) \(=\) \(\ds \frac 2 {a \sqrt 3} \map \arctan {\frac {2 x - a} {a \sqrt 3} }\) simplifying

$\blacksquare$