Primitive of Reciprocal of x cubed plus a cubed
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\d x} {x^3 + a^3} = \frac 1 {6 a^2} \ln \size {\frac {\paren {x + a}^2} {x^2 - a x + a^2} } + \frac 1 {a^2 \sqrt 3} \arctan \frac {2 x - a} {a \sqrt 3}$
Proof
\(\ds \int \frac {\d x} {x^3 + a^3}\) | \(=\) | \(\ds \int \paren {\frac 1 {3 a^2 \paren {x + a} } - \frac {x - 2 a} {3 a^2 \paren {x^2 - a x + a^2} } } \rd x\) | Partial Fraction Expansion | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \paren {\frac 1 {3 a^2 \paren {x + a} } - \frac {2 x - 4 a} {6 a^2 \paren {x^2 - a x + a^2} } } \rd x\) | multiplying top and bottom by $2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int \paren {\frac 1 {3 a^2 \paren {x + a} } - \paren {\frac {2 x - a} {6 a^2 \paren {x^2 - a x + a^2} } } - \paren {\frac {3 a} {6 a^2 \paren {x^2 - a x + a^2} } } } \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {3 a^2} \int \frac {\d x} {x + a} - \frac 1 {6 a^2} \int \frac {\paren {2 x - a} \rd x} {x^2 - a x + a^2} + \frac 1 {2 a} \int \frac {\d x} {x^2 - a x + a^2}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {3 a^2} \ln \size {x + a} - \frac 1 {6 a^2} \int \frac {\paren {2 x - a} \rd x} {x^2 - a x + a^2} + \frac 1 {2 a} \int \frac {\d x} {x^2 - a x + a^2}\) | Primitive of $\dfrac 1 {a x + b}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {3 a^2} \ln \size {x + a} - \frac 1 {6 a^2} \ln \size {x^2 - a x + a^2} + \frac 1 {2 a} \int \frac {\d x} {x^2 - a x + a^2}\) | Primitive of Function under its Derivative | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {6 a^2} \ln \size {\paren {x + a}^2} - \frac 1 {6 a^2} \ln \size {x^2 - a x + a^2} + \frac 1 {2 a} \int \frac {\d x} {x^2 - a x + a^2}\) | Logarithm of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {6 a^2} \ln \size {\frac {\paren {x + a}^2} {x^2 - a x + a^2} } + \frac 1 {2 a} \int \frac {\d x} {x^2 - a x + a^2}\) | Difference of Logarithms | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {6 a^2} \ln \size {\frac {\paren {x + a}^2} {x^2 - a x + a^2} } + \frac 1 {2 a} \paren {\frac 2 {a \sqrt 3} \map \arctan {\frac {2 x - a} {a \sqrt 3} } }\) | Primitive of $\dfrac 1 {x^2 - a x + a^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {6 a^2} \ln \size {\frac {\paren {x + a}^2} {x^2 - a x + a^2} } + \frac 1 {a^2 \sqrt 3} \arctan \frac {2 x - a} {a \sqrt 3}\) | simplifying |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $x^3 + a^3$: $14.299$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(14)$ Integrals Involving $x^3 + a^3$: $17.14.1.$