Primitive of Reciprocal of x cubed plus a cubed/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $x^3 + a^3$

$\dfrac 1 {x^3 + a^3} = \dfrac 1 {3 a^2 \paren {x + a} } - \dfrac {x - 2 a} {3 a^2 \paren {x^2 - a x + a^2} }$


Proof

\(\ds \frac 1 {x^3 + a^3}\) \(\equiv\) \(\ds \frac 1 {\paren {x + a} \paren {x^2 - a x + a^2} }\) Sum of Two Cubes
\(\ds \) \(\equiv\) \(\ds \frac A {x + a} + \frac {B x + C} {x^2 - a x + a^2}\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {x^2 - a x + a^2} + \paren {B x + C} \paren {x + a}\) multiplying through by $x^3 + a^3$
\(\text {(1)}: \quad\) \(\ds \) \(\equiv\) \(\ds A x^2 - A a x + A a^2 + B x^2 + B a x + C x + C a\) multiplying out


Equating coefficients of $x^2$ in $(1)$:

\(\ds A + B\) \(=\) \(\ds 0\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds -A\) \(=\) \(\ds B\)


Equating coefficients of $x$ in $(1)$:

\(\ds -A a + B a + C\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds -A a + -A a + C\) \(=\) \(\ds 0\) from $(2)$
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 2 A a\) \(=\) \(\ds C\)


Setting $x = 0$ in $(1)$:

\(\ds A a^2 + C a\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds A a^2 + \paren {2 A a} a\) \(=\) \(\ds 1\) from $(3)$
\(\ds \leadsto \ \ \) \(\ds A a^2 + \paren {2 A a} a\) \(=\) \(\ds \frac 1 {3 a^2}\)
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds 1 - \frac a {3 a^2}\) from $(3)$
\(\ds \) \(=\) \(\ds \frac {2 a} {3 a^2}\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds -\frac {-1} {3 a^2}\) from $(2)$


Summarising:

\(\ds A\) \(=\) \(\ds \frac 1 {3 a^2}\)
\(\ds B\) \(=\) \(\ds -\frac 1 {3 a^2}\)
\(\ds C\) \(=\) \(\ds \frac {2 a} {3 a^2}\)


Hence the result.

$\blacksquare$