Primitive of Reciprocal of x squared by a x + b cubed

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {x^2 \paren {a x + b}^3} = \frac {-a} {2 b^2 \paren {a x + b}^2} - \frac {2 a} {b^3 \paren {a x + b} } - \frac 1 {b^3 x} + \frac {3 a} {b^4} \ln \size {\frac {a x + b} x} + C$


Proof

\(\ds \int \frac {\d x} {x^2 \paren {a x + b}^3}\) \(=\) \(\ds \int \paren {\frac {-3 a} {b^4 x} + \frac 1 {b^3 x^2} + \frac {3 a^2} {b^4 \paren {a x + b} } + \frac {2 a^2} {b^3 \paren {a x + b}\^2} + \frac {a^2} {b^2 \paren {a x + b}^3} } \rd x\) Partial Fraction Expansion
\(\ds \) \(=\) \(\ds \frac {-3 a} {b^4} \int \frac {\d x} x + \frac 1 {b^3} \int \frac {\d x} {x^2} + \frac {3 a^2} {b^4} \int \frac {\d x} {\paren {a x + b} } + \frac {2 a^2} {b^3} \int \frac {\d x} {\paren {a x + b}^2} + \frac {a^2} {b^2} \int \frac {\d x} {\paren {a x + b}^3}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac {-3 a} {b^4} \ln \size x + \frac 1 {b^3} \int \frac {\d x} {x^2} + \frac {3 a^2} {b^4} \int \frac {\d x} {\paren {a x + b} } + \frac {2 a^2} {b^3} \int \frac {\d x} {\paren {a x + b}^2} + \frac {a^2} {b^2} \int \frac {\d x} {\paren {a x + b}^3} + C\) Primitive of Reciprocal
\(\ds \) \(=\) \(\ds \frac {-3 a} {b^4} \ln \size x + \frac 1 {b^3} \int \frac {\d x} {x^2} + \frac {3 a^2} {b^4} \ln \size {a x + b} + \frac {2 a^2} {b^3} \int \frac {\d x} {\paren {a x + b}^2} + \frac {a^2} {b^2} \int \frac {\d x} {\paren {a x + b}^3} + C\) Primitive of Reciprocal of a x + b
\(\ds \) \(=\) \(\ds \frac {-3 a} {b^4} \ln \size x + \frac 1 {b^3} \int \frac {\d x} {x^2} + \frac {3 a^2} {b^4} \ln \size {a x + b} + \frac {2 a^2} {b^3} \frac {-1} {a \paren {a x + b} } + \frac {a^2} {b^2} \int \frac {\d x} {\paren {a x + b}^3} + C\) Primitive of Reciprocal of a x + b squared
\(\ds \) \(=\) \(\ds \frac {-3 a} {b^4} \ln \size x + \frac 1 {b^3} \int \frac {\d x} {x^2} + \frac {3 a^2} {b^4} \ln \size {a x + b} - \frac {2 a} {b^3 \paren {a x + b} } + \frac {a^2} {b^2} \frac {-1} {2 a \paren {a x + b}^2} + C\) Primitive of Reciprocal of a x + b cubed
\(\ds \) \(=\) \(\ds \frac {-3 a} {b^4} \ln \size x + \frac 1 {b^3} \frac {-1} x + \frac {3 a^2} {b^4} \ln \size {a x + b} - \frac {2 a} {b^3 \paren {a x + b} } - \frac a {2 b^2 \paren {a x + b}^2} + C\) Primitive of Power
\(\ds \) \(=\) \(\ds \frac {-a} {2 b^2 \paren {a x + b}^2} - \frac {2 a} {b^3 \paren {a x + b} } - \frac 1 {b^3 x} + \frac {3 a} {b^4} \ln \size {\frac {a x + b} x} + C\) Difference of Logarithms and rearranging

$\blacksquare$


Sources