Primitive of Reciprocal of a x + b squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\d x} {\paren {a x + b}^2} = -\frac 1 {a \paren {a x + b} } + C$
Proof 1
Let $u = a x + b$.
Then:
\(\ds \int \frac {\d x} {\paren {a x + b}^2}\) | \(=\) | \(\ds \frac 1 a \int \frac {\d u} {u^2}\) | Primitive of Function of $a x + b$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 a \frac {-1} u + C\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 {a \paren {a x + b} } + C\) | substituting for $u$ |
$\blacksquare$
Proof 2
From Primitive of Power of $a x + b$:
- $\ds \int \paren {a x + b}^n \rd x = \frac {\paren {a x + b}^{n + 1} } {\paren {n + 1} a} + C$
where $n \ne 1$.
The result follows by setting $n = -2$.
$\blacksquare$
Examples
Primitive of $\dfrac 1 {\paren {x - a}^2}$
- $\ds \int \frac {\d x} {\paren {x - a}^2} = -\frac 1 {\paren {x - a} } + C$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $a x + b$: $14.66$