Primitive of Reciprocal of x squared by a x + b squared/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\dfrac 1 {x^2 \paren {a x + b}^2}$

$\dfrac 1 {x^2 \paren {a x + b}^2} \equiv -\dfrac {2 a} {b^3 x} + \dfrac 1 {b^2 x^2} + \dfrac {2 a^2} {b^3 \paren {a x + b} } + \dfrac {a^2} {b^2 \paren {a x + b}^2}$


Proof

\(\ds \dfrac 1 {x^2 \paren {a x + b}^2}\) \(\equiv\) \(\ds \dfrac A x + \dfrac B {x^2} + \dfrac C {a x + b} + \dfrac D {\paren {a x + b}^2}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A x \paren {a x + b}^2 + B \paren {a x + b}^2 + C x^2 \paren {a x + b} + D x^2\) multiplying through by $x^2 \paren {a x + b}^2$
\(\ds \) \(\equiv\) \(\ds A a^2 x^3 + 2 A a b x^2 + A b^2 x\) multiplying everything out
\(\ds \) \(\) \(\, \ds + \, \) \(\ds B a^2 x^2 + 2 B a b x + B b^2\) (tedious though this is, it helps to
\(\ds \) \(\) \(\, \ds + \, \) \(\ds C a x^3 + C b x^2 + D x^2\) identify the equal indices)


Setting $a x + b = 0$ in $(1)$:

\(\ds a x + b\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds -\frac b a\)
\(\ds \leadsto \ \ \) \(\ds D \paren {-\frac b a}^2\) \(=\) \(\ds 1\) substituting for $x$ in $(1)$: terms in $a x + b$ are all $0$
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds \frac {a^2} {b^2}\)


Equating constants in $(1)$:

\(\ds 1\) \(=\) \(\ds B b^2\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac 1 {b^2}\)


Equating $1$st powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A b^2 + 2 B a b\)
\(\ds \leadsto \ \ \) \(\ds A b^2\) \(=\) \(\ds -\frac {2 a b} {b^2}\) subtituting for $B$ from $(2)$
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds -\frac {2 a} {b^3}\)


Equating $3$rd powers of $x$:

\(\ds 0\) \(=\) \(\ds A a^2 + C a\)
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac {2 a^2} {b^3}\) substituting for $A$ from $(3)$ and simplifying


Summarising:

\(\ds A\) \(=\) \(\ds -\frac {2 a} {b^3}\)
\(\ds B\) \(=\) \(\ds \frac 1 {b^2}\)
\(\ds C\) \(=\) \(\ds \frac {2 a^2} {b^3}\)
\(\ds D\) \(=\) \(\ds \frac {a^2} {b^2}\)

Hence the result.

$\blacksquare$