Primitive of Reciprocal of x squared by a x + b squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\d x} {x^2 \paren {a x + b}^2} = \frac {-a} {b^2 \paren {a x + b} } - \frac 1 {b^2 x} + \frac {2 a} {b^3} \ln \size {\frac {a x + b} x} + C$
Proof
\(\ds \int \frac {\d x} {x^2 \paren {a x + b}^2}\) | \(=\) | \(\ds \int \paren {-\frac {2 a} {b^3 x} + \frac 1 {b^2 x^2} + \frac {2 a^2} {b^3 \paren {a x + b} } + \frac {a^2} {b^2 \paren {a x + b}^2} } \rd x\) | Partial Fraction Expansion | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac {2 a} {b^3} \int \frac {\d x} x + \frac 1 {b^2} \int \frac {\d x} {x^2} + \frac {2 a^2} {b^3} \int \frac {\d x} {\paren {a x + b} } + \frac {a^2} {b^2} \int \frac {\d x} {\paren {a x + b}^2}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac {2 a} {b^3} \int \frac {\d x} x + \frac 1 {b^2} \frac {-1} x + \frac {2 a^2} {b^3} \int \frac {\d x} {\paren {a x + b} } + \frac {a^2} {b^2} \int \frac {\d x} {\paren {a x + b}^2} + C\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac {2 a} {b^3} \ln \size x + \frac 1 {b^2} \frac {-1} x + \frac {2 a^2} {b^3} \int \frac {\d x} {\paren {a x + b} } + \frac {a^2} {b^2} \int \frac {\d x} {\paren {a x + b}^2} + C\) | Primitive of $\dfrac 1 x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac {2 a} {b^3} \ln \size x - \frac 1 {b^2 x} + \frac {2 a^2} {a b^3} \ln \size {a x + b} + \frac {a^2} {b^2} \int \frac {\d x} {\paren {a x + b}^2} + C\) | Primitive of $\dfrac 1 {a x + b}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac {2 a} {b^3} \ln \size x - \frac 1 {b^2 x} + \frac {2 a} {b^3} \ln \size {a x + b} + \frac {a^2} {b^2} \frac {-1} {a \paren {a x + b} } + C\) | Primitive of $\dfrac 1 {\paren {a x + b}^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {-a} {b^2 \paren {a x + b} } - \frac 1 {b^2 x} + \frac {2 a} {b^3} \ln \size {\frac {a x + b} x} + C\) | Difference of Logarithms and rearranging |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $a x + b$: $14.71$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(1)$ Integrals Involving $a x + b$: $17.1.10.$