Primitive of Reciprocal of x squared by x squared plus a squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {x^2 \paren {x^2 + a^2} } = -\frac 1 {a^2 x} - \frac 1 {a^3} \arctan \frac x a + C$


Proof

\(\ds \int \frac {\d x} {x^2 \paren {x^2 + a^2} }\) \(=\) \(\ds \int \paren {\frac 1 {a^2 x^2} - \frac 1 {a^2 \paren {x^2 + a^2} } } \rd x\) Partial Fraction Expansion
\(\ds \) \(=\) \(\ds \frac 1 {a^2} \int \frac {\d x} {x^2} - \frac 1 {a^2} \int \frac {1 \rd x} {x^2 + a^2}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds -\frac 1 {a^2 x} - \frac 1 {a^2} \int \frac {x \rd x} {x^2 + a^2} + C\) Primitive of Power
\(\ds \) \(=\) \(\ds -\frac 1 {a^2 x} - \frac 1 {a^2} \paren {\frac 1 a \arctan \frac x a} + C\) Primitive of $\dfrac 1 {x^2 + a^2}$
\(\ds \) \(=\) \(\ds -\frac 1 {a^2 x} - \frac 1 {a^3} \arctan \frac x a + C\) simplifying

$\blacksquare$


Sources