Primitive of Reciprocal of x squared by x squared plus a squared squared/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $x^2 \paren {x^2 + a^2}^2$

$\dfrac 1 {x^2 \paren {x^2 + a^2}^2} \equiv -\dfrac 1 {a^4 x^2} - \dfrac 1 {a^4 \paren {x^2 + a^2} } - \dfrac 1 {a^2 \paren {x^2 + a^2}^2}$


Proof

\(\ds \dfrac 1 {x^2 \paren {x^2 + a^2}^2}\) \(\equiv\) \(\ds \dfrac A x + \dfrac B {x^2} + \dfrac {C x + D} {x^2 + a^2} + \dfrac {E x + F} {\paren {x^2 + a^2}^2}\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A x \paren {x^2 + a^2}^2 + B \paren {x^2 + a^2}^2\) multiplying through by $x^2 \paren {x^2 + a^2}^2$
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \paren {C x + D} x^2 \paren {x^2 + a^2} + \paren {E x + F} x^2\)
\(\text {(1)}: \quad\) \(\ds \) \(\equiv\) \(\ds A x^5 + 2 A a^2 x^3 + A a^4 x + B x^4 + 2 B a^2 x^2 + B a^4\) multiplying everything out
\(\ds \) \(\) \(\, \ds + \, \) \(\ds C x^5 + C x^3 a^2 + D x^4 + D x^2 a^2 + E x^3 + F x^2\)


Setting $x = 0$ in $(1)$:

\(\ds B a^4\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac 1 {a^4}\)


Equating coefficients of $x^4$ in $(1)$:

\(\ds 0\) \(=\) \(\ds B + D\)
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds -\frac 1 {a^4}\)


Equating coefficients of $x$ in $(1)$:

\(\ds A\) \(=\) \(\ds 0\)


Equating coefficients of $x^5$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A + C\)
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds 0\)


Equating coefficients of $x^3$ in $(1)$:

\(\ds 2 A a^2 + C a^2 + E\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds E\) \(=\) \(\ds 0\)


Equating coefficients of $x^2$ in $(1)$:

\(\ds 0\) \(=\) \(\ds 2 B a^2 + D a^2 + F\)
\(\ds \leadsto \ \ \) \(\ds F\) \(=\) \(\ds -\frac 1 {a^2}\)


Summarising:

\(\ds A\) \(=\) \(\ds 0\)
\(\ds B\) \(=\) \(\ds \frac 1 {a^4}\)
\(\ds C\) \(=\) \(\ds 0\)
\(\ds D\) \(=\) \(\ds -\frac 1 {a^4}\)
\(\ds E\) \(=\) \(\ds 0\)
\(\ds F\) \(=\) \(\ds -\frac 1 {a^2}\)

Hence the result.

$\blacksquare$