Primitive of Reciprocal of x squared by x squared plus a squared squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\d x} {x^2 \paren {x^2 + a^2}^2} = -\frac 1 {a^4 x} - \frac x {2 a^4 \paren {x^2 + a^2} } - \frac 3 {2 a^5} \arctan \frac x a + C$
Proof
Let:
\(\ds \int \frac {\d x} {x^2 \paren {x^2 + a^2}^2}\) | \(=\) | \(\ds \int \paren {\frac 1 {a^4 x^2} - \frac 1 {a^4 \paren {x^2 + a^2} } - \frac 1 {a^2 \paren {x^2 + a^2}^2} } \rd x\) | Partial Fraction Expansion | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^4} \int \frac {\d x} {x^2} - \frac 1 {a^4} \int \frac {\d x} {x^2 + a^2} - \frac 1 {a^2} \int \frac {\d x} {\paren {x^2 + a^2}^2}\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^4} \frac {-1} x - \frac 1 {a^4} \int \frac {\d x} {x^2 + a^2} - \frac 1 {a^2} \int \frac {\d x} {\paren {x^2 + a^2}^2} + C\) | Primitive of Power | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 {a^4 x} - \frac 1 {a^4} \paren {\frac 1 a \arctan \frac x a} - \frac 1 {a^2} \int \frac {\d x} {\paren {x^2 + a^2}^2} + C\) | Primitive of $\dfrac 1 {x^2 + a^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 {a^4 x} - \frac 1 {a^5} \arctan \frac x a - \frac 1 {a^2} \paren {\frac x {2 a^2 \paren {x^2 + a^2} } + \frac 1 {2 a^3} \arctan \frac x a} + C\) | Primitive of $\dfrac 1 {\paren {x^2 + a^2}^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 {a^4 x} - \frac x {2 a^4 \paren {x^2 + a^2} } - \frac 3 {2 a^5} \arctan \frac x a + C\) | simplification |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $x^2 + a^2$: $14.137$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(6)$ Integrals Involving $x^2 + a^2$: $17.6.13.$