Primitive of Reciprocal of x squared minus a squared/Logarithm Form 2/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {x^2 - a^2} = \frac 1 {2 a} \ln \size {\frac {x - a} {x + a} } + C$


Proof

\(\ds \int \frac {\d x} {x^2 - a^2}\) \(=\) \(\ds \int \frac {\d x} {\paren {x - a} \paren {x + a} }\) Difference of Two Squares
\(\ds \) \(=\) \(\ds \int \frac {\d x} {2 a \paren {x - a} } - \int \frac {\d x} {2 a \paren {x + a} }\) Partial Fraction Expansion
\(\ds \) \(=\) \(\ds \frac 1 {2 a} \int \frac {\d x} {x - a} - \frac 1 {2 a} \int \frac {\d x} {x + a}\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds \frac 1 {2 a} \ln \size {x - a} - \frac 1 {2 a} \ln \size {x + a} + C\) Primitive of Reciprocal
\(\ds \) \(=\) \(\ds \dfrac 1 {2 a} \ln \size {\dfrac {x - a} {x + a} } + C\) Difference of Logarithms

$\blacksquare$