Primitive of Reciprocal of x squared minus a squared/Logarithm Form 2/Proof 2/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $\paren {x^2 - a^2}$

$\dfrac 1 {x^2 - a^2} \equiv \dfrac 1 {2 a \paren {x - a} } - \dfrac 1 {2 a \paren {x + a} }$


Proof

\(\ds \frac 1 {\paren {x^2 - a^2} }\) \(\equiv\) \(\ds \frac A {x - a} + \frac B {x + a}\) Difference of Two Squares
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {x + a} + B \paren {x - a}\) multiplying through by $\paren {x^2 - a^2}$


Setting $x = a$ in $(1)$:

\(\ds A \cdot 2 a + B \cdot 0\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac 1 {2 a}\)


Setting $x = -a$ in $(1)$:

\(\ds A \cdot 0 + B \cdot \paren {-2 a}\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac {-1} {2 a}\)


Summarising:

\(\ds A\) \(=\) \(\ds \frac 1 {2 a}\)
\(\ds B\) \(=\) \(\ds \frac {-1} {2 a}\)


Hence the result.

$\blacksquare$