Primitive of Reciprocal of x squared plus a squared squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {\d x} {\paren {x^2 + a^2}^2} = \frac x {2 a^2 \paren {x^2 + a^2} } + \frac 1 {2 a^3} \arctan \frac x a + C$
Proof
Let:
\(\ds x\) | \(=\) | \(\ds a \tan \theta\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d x} {\d \theta}\) | \(=\) | \(\ds a \sec^2 \theta\) | Derivative of Tangent Function | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {\d x} {\paren {x^2 + a^2}^2}\) | \(=\) | \(\ds \int \frac {a \sec^2 \theta} {\paren {a^2 \tan^2 \theta + a^2}^2} \rd \theta\) | Integration by Substitution | ||||||||||
\(\ds \) | \(=\) | \(\ds \int \frac {a \sec^2 \theta} {\paren {a^2 \sec^2 \theta}^2} \rd \theta\) | Difference of Squares of Secant and Tangent | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^3} \int \frac {\d \theta} {\sec^2 \theta}\) | simplification | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^3} \int \cos^2 \theta \rd \theta\) | Definition of Real Secant Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {a^3} \paren {\frac \theta 2 + \frac {\sin 2 \theta} 4} + C\) | Primitive of Square of Cosine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac \theta {2 a^3} + \frac 1 {2 a^3} \frac {\tan \theta} {1 + \tan^2 \theta} + C\) | Tangent Half-Angle Substitution for Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac x {2 a^2 \paren {x^2 + a^2} } + \frac 1 {2 a^3} \arctan \frac x a + C\) | substituting for $\theta$ |
$\blacksquare$
Also see
Sources
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of Mathematical Functions ... (previous) ... (next): $3$: Elementary Analytic Methods: $3.3$ Rules for Differentiation and Integration: Integrals of Rational Algebraic Functions: $3.3.24$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $x^2 + a^2$: $14.132$
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous) ... (next): Front endpapers: A Brief Table of Integrals: $17$.
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(6)$ Integrals Involving $x^2 + a^2$: $17.6.8.$