Primitive of Sine of a x by Sine of b x
Jump to navigation
Jump to search
Theorem
For $p \ne q$:
- $\ds \int \sin a x \sin b x \rd x = \frac {\map \sin {a - b} x} {2 \paren {a - b} } - \frac {\map \sin {a + b} x} {2 \paren {a + b} } + C$
Proof
\(\ds \int \sin a x \sin b x \rd x\) | \(=\) | \(\ds \int \paren {\frac {\map \cos {a x - b x} - \map \cos {a x + b x} } 2} \rd x\) | Werner Formula for Sine by Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \int \map \cos {a - b} x \rd x - \frac 1 2 \int \map \cos {a + b} x \rd x\) | Linear Combination of Primitives | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 \frac {\map \sin {a - b} x} {a - b} - \frac 1 2 \frac {\map \sin {a + b} x} {a + b} + C\) | Primitive of $\cos a x$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map \sin {a - b} x} {2 \paren {a - b} } - \frac {\map \sin {a + b} x} {2 \paren {a + b} } + C\) | simplifying |
$\blacksquare$
Also see
- For $a = b$, see Primitive of $\sin^2 a x$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\sin a x$: $14.353$
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous) ... (next): Front endpapers: A Brief Table of Integrals: $62. \ \text {(b)}$