Primitive of x by Exponential of a x
Jump to navigation
Jump to search
Theorem
- $\ds \int x e^{a x} \rd x = \frac {e^{a x} } a \paren {x - \frac 1 a} + C$
Proof
With a view to expressing the primitive in the form:
- $\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$
let:
\(\ds u\) | \(=\) | \(\ds x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d u} {\d x}\) | \(=\) | \(\ds 1\) | Derivative of Identity Function |
and let:
\(\ds \frac {\d v} {\d x}\) | \(=\) | \(\ds e^{a x}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds \frac {e^{a x} } a\) | Primitive of $e^{a x}$ |
Then:
\(\ds \int x e^{a x} \rd x\) | \(=\) | \(\ds x \paren {\frac {e^{a x} } a} - \int \frac {e^{a x} } a \rd x + C\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds x \paren {\frac {e^{a x} } a} - \frac 1 a \int e^{a x} \rd x + C\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds x \paren {\frac {e^{a x} } a} - \frac 1 a \paren {\frac {e^{a x} } a} + C\) | Primitive of $e^{a x}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{a x} } a \paren {x - \frac 1 a} + C\) | simplifying |
$\blacksquare$
Also presented as
This result is also seen presented in the form:
- $\ds \int x e^{a x} \rd x = \frac {e^{a x} } {a^2} \paren {a x - 1} + C$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $e^{a x}$: $14.510$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 17$: Tables of Special Indefinite Integrals: $(25)$ Integrals Involving $e^{a x}$: $17.25.2.$