Primitive of x over a squared minus x squared
Jump to navigation
Jump to search
Theorem
- $\ds \int \frac {x \rd x} {a^2 - x^2} = -\frac 1 2 \map \ln {a^2 - x^2} + C$
for $x^2 < a^2$.
Proof
Let:
\(\ds z\) | \(=\) | \(\ds a^2 - x^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac {\d z} {\d x}\) | \(=\) | \(\ds -2 x\) | Power Rule for Derivatives | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \frac {\d x} {x \paren {a^2 - x^2} }\) | \(=\) | \(\ds \int \frac {\d z} {-2 z}\) | Integration by Substitution | ||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 2 \int \frac {\d z} z\) | Primitive of Constant Multiple of Function | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 2 \ln z + C\) | Primitive of Reciprocal: Corollary as $z > 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 2 \, \map \ln {a^2 - x^2} + C\) | substituting for $z$ |
$\blacksquare$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $a^2 - x^2$, $x^2 < a^2$: $14.164$