Primitive of x squared over a x + b/Examples/x^2 over x - 1

From ProofWiki
Jump to navigation Jump to search

Example of Use of Primitive of $\dfrac {x^2} {a x + b}$

$\ds \int \dfrac {x^2 \rd x} {x - 1} = \frac {x^2} 2 + x + \ln \size {x - 1} + C$


Proof

From Primitive of $\dfrac {x^2} {a x + b}$:

$\ds \int \frac {x^2 \rd x} {a x + b} = \frac {\paren {a x + b}^2} {2 a^3} - \frac {2 b \paren {a x + b} } {a^3} + \frac {b^2} {a^3} \ln \size {a x + b} + C$


Hence:

\(\ds \int \dfrac {x^2 \rd x} {x - 1}\) \(=\) \(\ds \frac {\paren {x - 1}^2} 2 + 2 \paren {x - 1} + \ln \size {x - 1} + C\) setting $a \gets 1$, $b \gets -1$ and simplifying
\(\ds \) \(=\) \(\ds \frac {x^2 - 2 x + 1} 2 + 2 x - 2 + \ln \size {x - 1} + C\) multiplying out
\(\ds \) \(=\) \(\ds \frac {x^2} 2 + \dfrac 1 2 + x - 2 + \ln \size {x - 1} + C\) simplifying
\(\ds \) \(=\) \(\ds \frac {x^2} 2 + x + \ln \size {x - 1} + C\) subsuming $-2 + \dfrac 1 2$ into the arbitrary constant

$\blacksquare$


Sources