Primitive of Reciprocal of Root of a x squared plus b x plus c/Examples/2 x + x^2

From ProofWiki
Jump to navigation Jump to search

Example of Use of Primitive of $\dfrac 1 {a x^2 + b x + c}$

$\ds \int \dfrac {\d x} {2 x + x^2} = $


Proof

We aim to use Primitive of $\dfrac 1 {a x^2 + b x + c}$ with:

\(\ds a\) \(=\) \(\ds 1\)
\(\ds b\) \(=\) \(\ds 2\)
\(\ds c\) \(=\) \(\ds 0\)

We note that:

\(\ds b^2 - 4 a c\) \(=\) \(\ds 2^2 - 4 \times 1 \times 0\)
\(\ds \) \(=\) \(\ds 4\)


Hence from Primitive of $\dfrac 1 {a x^2 + b x + c}$:

$\ds \int \frac {\d x} {a x^2 + b x + c} = \dfrac 1 {\sqrt a} \ln \size {2 \sqrt a \sqrt {a x^2 + b x + c} + 2 a x + b} + C$


Substituting for $a$, $b$ and $c$ and simplifying:

\(\ds \int \frac {\d x} {2 x + x^2}\) \(=\) \(\ds \dfrac 1 {\sqrt 1} \ln \size {2 \sqrt 1 \sqrt {1 \times x^2 + 2 \times x + 0} + 2 \times 1 \times x + 2} + C\)
\(\ds \) \(=\) \(\ds \ln \size {2 \paren {x + 1 + \sqrt {x^2 + 2 x} } } + C\) simplifying
\(\ds \) \(=\) \(\ds \ln 2 + \map \ln {x + 1 + \sqrt {x^2 + 2 x} } + C\) Sum of Logarithms
\(\ds \) \(=\) \(\ds \map \ln {x + 1 + \sqrt {x^2 + 2 x} } + C\) subsuming $\ln 2$ into the arbitrary constant

$\blacksquare$


Sources