Primitive of x squared over x squared minus a squared squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {x^2 \rd x} {\paren {x^2 - a^2}^2} = \frac {-x} {2 \paren {x^2 - a^2} } + \frac 1 {4 a} \map \ln {\frac {x - a} {x + a} } + C$

for $x^2 > a^2$.


Proof

\(\ds \int \frac {x^2 \rd x} {\paren {x^2 - a^2}^2}\) \(=\) \(\ds \int \frac {x^2 - a^2 + a^2} {\paren {x^2 - a^2}^2} \rd x\)
\(\ds \) \(=\) \(\ds \int \frac {x^2 - a^2} {\paren {x^2 - a^2}^2} \rd x + a^2 \int \frac {\d x} {\paren {x^2 - a^2}^2}\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \int \frac {\d x} {x^2 - a^2} + a^2 \int \frac {\d x} {\paren {x^2 - a^2}^2}\) simplification
\(\ds \) \(=\) \(\ds \frac 1 {2 a} \paren {\frac {x - a} {x + a} } + a^2 \int \frac {\d x} {\paren {x^2 - a^2}^2} + C\) Primitive of $\dfrac 1 {x^2 - a^2}$
\(\ds \) \(=\) \(\ds \frac 1 {2 a} \paren {\frac {x - a} {x + a} } + a^2 \paren {\frac {-x} {2 a^2 \paren {x^2 - a^2} } - \frac 1 {4 a^3} \paren {\frac {x - a} {x + a} } } + C\) Primitive of $\dfrac 1 {\paren {x^2 - a^2}^2}$
\(\ds \) \(=\) \(\ds \frac {-x} {2 \paren {x^2 - a^2} } + \frac 1 {4 a} \map \ln {\frac {x - a} {x + a} } + C\) simplifying

$\blacksquare$


Also see


Sources