Product Category is Category

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf C$ and $\mathbf D$ be metacategories.

Then the product category $\mathbf C \times \mathbf D$ is a metacategory.


Proof

Let $\left({X,Y}\right), \left({X',Y'}\right) \in \mathbf C \times \mathbf D$.

Let $\left({f,g}\right) : \left({X,Y}\right) \to \left({X',Y'}\right)$ and $\left({h,k}\right) : \left({X',Y'}\right) \to \left({X,Y}\right)$ be morphisms.

Let $\operatorname{id}_X$, $\operatorname{id}_Y$ be the identity morphisms for the objects $X$ and $Y$ respectively.


Then:

\(\ds \left({f, g}\right) \circ \left({\operatorname{id}_X, \operatorname{id}_Y}\right)\) \(=\) \(\ds \left({f \circ \operatorname{id}_X, g \circ \operatorname{id}_Y}\right)\) By the definition of composition in the product category.
\(\ds \) \(=\) \(\ds \left({f, g}\right)\) By the definition of the identity morphisms

Similarly:

\(\ds \left({\operatorname{id}_X, \operatorname{id}_Y}\right) \circ \left({h, k}\right)\) \(=\) \(\ds \left({\operatorname{id}_X \circ h, \operatorname{id}_Y \circ k}\right)\) By the definition of composition in the product category.
\(\ds \) \(=\) \(\ds \left({h, k}\right)\) By the definition of the identity morphisms

Therefore, $\left({\operatorname{id}_X, \operatorname{id}_Y}\right)$ satisfies the property of an identity morphism.


Let $\left({f, g}\right)$, $\left({h, k}\right)$ and $\left({\ell, m}\right)$ be composable morphisms of $\mathbf C \times \mathbf D$. We have:

\(\ds \left({ \left({f, g}\right) \circ \left({h, k}\right) }\right) \circ \left({\ell, m}\right)\) \(=\) \(\ds \left({f \circ h, g \circ k}\right) \circ \left({\ell, m}\right)\) By the definition of composition in the product category.
\(\ds \) \(=\) \(\ds \left({ \left({f \circ h}\right) \circ \ell, \left({g \circ k}\right) \circ m}\right)\)
\(\ds \) \(=\) \(\ds \left({f \circ \left({h \circ \ell}\right), g \circ \left({k \circ m}\right) }\right)\) By associativity of morphisms of $\mathbf C$ and $\mathbf D$.
\(\ds \) \(=\) \(\ds \left({f, g}\right) \circ \left({ \left({h, k}\right) \circ \left({\ell, m}\right) }\right)\)

Therefore, composition of morphisms in $\mathbf C \times \mathbf D$ is also associative.

$\blacksquare$