Product of Semigroup Element with Right Inverse is Idempotent
Jump to navigation
Jump to search
Theorem
Let $\struct {S, \circ}$ be a semigroup with a right identity $e_R$.
Let $x \in S$ such that $\exists x_R: x \circ x_R = e_R$, that is, $x$ has a right inverse with respect to the right identity.
Then:
- $\paren {x_R \circ x} \circ \paren {x_R \circ x} = x_R \circ x$
That is, $x_R \circ x$ is idempotent.
Proof
\(\ds \paren {x_R \circ x} \circ \paren {x_R \circ x}\) | \(=\) | \(\ds x_R \circ \paren {x \circ x_R} \circ x\) | Semigroup Axiom $\text S 1$: Associativity | |||||||||||
\(\ds \) | \(=\) | \(\ds x_R \circ e_R \circ x\) | Definition of Right Inverse Element | |||||||||||
\(\ds \) | \(=\) | \(\ds x_R \circ x\) | Definition of Right Identity |
$\blacksquare$
Examples
$2 x$ and $\dfrac x 2$ Mappings on Integers
Let $\struct {\Z^\Z, \circ}$ be the semigroup defined such that:
- $\Z$ is the set of all mappings on the integers.
- $\circ$ denotes composition of mappings.
Let $\rho, \sigma \in \Z^\Z$ such that:
- $\forall x \in \Z: \map \rho x = \begin{cases} \dfrac x 2 & : x \text { even} \\ 0 & : x \text { odd} \end{cases}$
- $\forall x \in \Z: \map \sigma x = 2 x$
Then:
- $\rho$ is a right inverse for $\sigma$
but:
- $\rho$ is not a left inverse for $\sigma$
As a result:
- $\paren {\sigma \circ \rho}^2 = \sigma \circ \rho$
Also see
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): Chapter $4$. Groups: Exercise $10$