Product of r Choose k with r Minus Half Choose k/Formulation 1/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $k \in \Z$, $r \in \R$.

$\dbinom r k \dbinom {r - \frac 1 2} k = \dfrac {\dbinom {2 r} k \dbinom {2 r - k} k} {4^k}$

where $\dbinom r k$ denotes a binomial coefficient.


Proof

First we establish the following:

\(\ds \paren {r - \frac 1 2}^{\underline k}\) \(=\) \(\ds \paren {r - \frac 1 2} \paren {r - \frac 3 2} \paren {r - \frac 5 2} \dotsm \paren {r - \frac 1 2 - k + 1}\) Definition of Falling Factorial
\(\ds \) \(=\) \(\ds \dfrac {2^k \paren {r - \frac 1 2} \paren {r - \frac 3 2} \paren {r - \frac 5 2} \cdots \paren {r - \frac 1 2 - k + 1} } {2^k}\)
\(\ds \) \(=\) \(\ds \dfrac {\paren {2 r - 1} \paren {2 r - 3} \paren {2 r - 5} \dotsm \paren {2 r - 2 k + 1} } {2^k}\)
\(\ds \) \(=\) \(\ds \dfrac {2 r \paren {2 r - 1} \paren {2 r - 2} \paren {2 r - 3} \dotsm \paren {2 r - 2 k + 2} \paren {2 r - 2 k + 1} } {2^k \paren {2 r \paren {2 r - 2} \paren {2 r - 4} \dotsm \paren {2 r - 2 k + 2} } }\)
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \dfrac {\paren {2 r}^{\underline{2 k} } } {2^k \times 2^k r^{\underline k} }\) Definition of Falling Factorial


Then:

\(\ds \dbinom r k \dbinom {r - \frac 1 2} k\) \(=\) \(\ds \dfrac {r^{\underline k} } {k!} \dfrac {\paren {r - \frac 1 2}^{\underline k} } {k!}\) Definition of Binomial Coefficient
\(\ds \) \(=\) \(\ds \dfrac {r^{\underline k} } {k!} \dfrac {\paren {2 r}^{\underline {2 k} } } {k! \, 2^{2 k} r^{\underline k} }\) from $(1)$
\(\ds \) \(=\) \(\ds \dfrac {\paren {2 r}^{\underline {2 k} } } {\paren {k!}^2 \, 4^k}\) simplifying
\(\ds \) \(=\) \(\ds \dfrac {\paren {2 r}^{\underline k} \paren {2 r - k}^{\underline k} } {\paren {k!}^2 \, 4^k}\) Falling Factorial of Sum of Integers
\(\ds \) \(=\) \(\ds \dfrac 1 {4^k} \dfrac {\paren {2 r}^{\underline k} } {k!} \dfrac {\paren {2 r - k}^{\underline k} } {k!}\) separating out
\(\ds \) \(=\) \(\ds \dfrac 1 {4^k} \dbinom {2 r} k \dbinom {2 r - k} k\) Definition of Binomial Coefficient