ProofWiki:Jokes/Adult/Sex is Fun
< ProofWiki:Jokes | Adult
Jump to navigation
Jump to search
Joke
Let $e^{x / n} = \dfrac \d {\d x} \map f u$.
Then:
\(\ds \sqrt [n] {e^x}\) | \(=\) | \(\ds \dfrac \d {\d x} \map f u\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\sqrt [n] {e^x} }^n\) | \(=\) | \(\ds \paren {\dfrac \d {\d x} \map f u}^n\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^x\) | \(=\) | \(\ds \paren {\dfrac \d {\d x} \map f u}^n\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int e^x\) | \(=\) | \(\ds \int \paren {\dfrac \d {\d x} \map f u}^n\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int e^x\) | \(=\) | \(\ds \map f u^n\) |
Purists are entitled of course to quibble that the left hand side should really read $\ds \int e^x \rd x$.