Properties of Beta Function
Jump to navigation
Jump to search
Theorem
Let $\Beta \left({x, y}\right)$ denote the Beta function:
- $\ds \map \Beta {x, y} := \int_{\mathop \to 0}^{\mathop \to 1} t^{x - 1} \paren {1 - t}^{y - 1} \rd t$
$\Beta \left({x, y}\right)$ has the following properties:
Commutativity of Parameters of Beta Function
- $\map \Beta {x, y} = \map \Beta {y, x}$
Beta Function of Real Number with 1
- $\Beta \left({x, 1}\right) = \Beta \left({1, x}\right) = \dfrac 1 x$
Beta Function of $x$ with $y+1$ by $\dfrac {x+y} y$
- $\map \Beta {x, y} = \dfrac {x + y} y \map \Beta {x, y + 1}$
Beta Function of $x+1$ with $y$ plus Beta Function of $x$ with $y+1$
- $\map \Beta {x + 1, y} + \map \Beta {x, y + 1} = \map \Beta {x, y}$