Properties of Biconditional
Jump to navigation
Jump to search
Theorem
Rule of Material Equivalence
The Rule of Material Equivalence is a valid deduction sequent in propositional logic:
- If we can conclude that $p$ implies $q$ and if we can also conclude that $q$ implies $p$, then we may infer that $p$ if and only if $q$.
Formulation 1
- $p \iff q \dashv \vdash \paren {p \implies q} \land \paren {q \implies p}$
Formulation 2
- $\vdash \paren {p \iff q} \iff \paren {\paren {p \implies q} \land \paren {q \implies p} }$
Biconditional as Disjunction of Conjunctions
Formulation 1
- $p \iff q \dashv \vdash \paren {p \land q} \lor \paren {\neg p \land \neg q}$
Formulation 2
- $\vdash \paren {p \iff q} \iff \paren {\paren {p \land q} \lor \paren {\neg p \land \neg q} }$
Biconditional Equivalent to Biconditional of Negations
Formulation 1
- $p \iff q \dashv \vdash \neg p \iff \neg q$
Formulation 2
- $\vdash \left({p \iff q}\right) \iff \left({\neg p \iff \neg q}\right)$
Biconditional iff Disjunction implies Conjunction
Formulation 1
- $p \iff q \dashv \vdash \paren {p \lor q} \implies \paren {p \land q}$
Formulation 2
- $\vdash \paren {p \iff q} \iff \paren {\paren {p \lor q} \implies \paren {p \land q} }$