Properties of Generalized Hypergeometric Function

From ProofWiki
Jump to navigation Jump to search

Theorem

From the Definition of Hypergeometric Function/Generalized, we have:

$\ds \map { {}_m \operatorname F_n} { { {a_1, \ldots, a_m} \atop {b_1, \ldots, b_n} } \, \middle \vert \, z} = \sum_{k \mathop = 0}^\infty \dfrac { {a_1}^{\overline k} \cdots {a_m}^{\overline k} } { {b_1}^{\overline k} \cdots {b_n}^{\overline k} } \dfrac {z^k} {k!}$

where $x^{\overline k}$ denotes the $k$th rising factorial power of $x$.

This page gathers together some of the properties of hypergeometric functions.


Gauss's Hypergeometric Theorem

$\map F {a, b; c; 1} = \dfrac {\map \Gamma c \map \Gamma {c - a - b} } {\map \Gamma {c - a} \map \Gamma {c - b} }$


Kummer's Hypergeometric Theorem

$\map F {n, -x; x + n + 1; -1} = \dfrac {\map \Gamma {x + n + 1} \map \Gamma {\dfrac n 2 + 1} } {\map \Gamma {x + \dfrac n 2 + 1} \map \Gamma {n + 1} }$


Dixon's Hypergeometric Theorem

$\ds \map { {}_3 \operatorname F_2} { { {n, -x, -y} \atop {x + n + 1, y + n + 1} } \, \middle \vert \, 1} = \dfrac {\map \Gamma {x + n + 1} \map \Gamma {y + n + 1} \map \Gamma {\dfrac n 2 + 1} \map \Gamma {x + y + \dfrac n 2 + 1} } { \map \Gamma {n + 1} \map \Gamma {x + y + n + 1} \map \Gamma {x + \dfrac n 2 + 1} \map \Gamma {y + \dfrac n 2 + 1} } $


Watson's Hypergeometric Theorem

$\ds \map { {}_3 \operatorname F_2} { { {a, b, c} \atop {\dfrac 1 2 \paren {a + b + 1}, 2 c } } \, \middle \vert \, 1} = \dfrac {\map \Gamma {\dfrac 1 2} \map \Gamma {\dfrac 1 2 + c} \map \Gamma {\dfrac 1 2 \paren {1 + a + b} } \map \Gamma {\dfrac 1 2 \paren {1 - a - b} + c } } {\map \Gamma {\dfrac 1 2 \paren {1 + a} } \map \Gamma {\dfrac 1 2 \paren {1 + b} } \map \Gamma {\dfrac 1 2 \paren {1 - a} + c } \map \Gamma {\dfrac 1 2 \paren {1 - b} + c } }$


Pfaff-Saalschütz Theorem

$\ds \map { {}_3 \operatorname F_2} { { {a, b, -n} \atop {c, 1 + a + b - c - n} } \, \middle \vert \, 1} = \dfrac {\paren {c - a}^{\overline n} \paren {c - b}^{\overline n} } { c^{\overline n} \paren {c - a - b}^{\overline n} }$


Dougall's Hypergeometric Theorem

$\ds \map { {}_5 \operatorname F_4} { { {\dfrac n 2 + 1, n, -x, -y, -z} \atop {\dfrac n 2, x + n + 1, y + n + 1, z + n + 1} } \, \middle \vert \, 1} = \dfrac {\map \Gamma {x + n + 1} \map \Gamma {y + n + 1} \map \Gamma {z + n + 1} \map \Gamma {x + y + z + n + 1} } {\map \Gamma {n + 1} \map \Gamma {x + y + n + 1} \map \Gamma {y + z + n + 1} \map \Gamma {x + z + n + 1} }$


Dougall-Ramanujan Identity

\(\ds \map { {}_7 \operatorname F_6} { { {n, 1 + \dfrac n 2, -x, -y, -z, -u, x + y + z + u + 2n + 1} \atop {\dfrac n 2, x + n + 1, y + n + 1, z + n + 1, u + n + 1, -x - y - z - u - n} } \, \middle \vert \, 1}\) \(=\) \(\ds \dfrac {\map \Gamma {x + n + 1} \map \Gamma {y + n + 1} \map \Gamma {z + n + 1} \map \Gamma {x + y + z + n + 1} } {\map \Gamma {n + 1} \map \Gamma {x + y + n + 1} \map \Gamma {y + z + n + 1} \map \Gamma {x + z + n + 1} }\)
\(\ds \) \(\) \(\, \ds \times \, \) \(\ds \dfrac {\map \Gamma {u + n + 1} \map \Gamma {x + z + u + n + 1} \map \Gamma {y + z + u + n + 1} \map \Gamma {x + y + u + n + 1} } {\map \Gamma {x + u + n + 1} \map \Gamma {z + u + n + 1} \map \Gamma {y + u + n + 1} \map \Gamma {x + y + z + u + n + 1} }\)