Gauss's Hypergeometric Theorem
![]() | This article has been identified as a candidate for Featured Proof status. If you do not believe that this proof is worthy of being a Featured Proof, please state your reasons on the talk page. To discuss this page in more detail, feel free to use the talk page. |
Theorem
Let $a, b, c \in \C$.
Let $c \notin \Z_{\le 0}$.
Let $\map \Re {c - a - b} > 0$.
Then:
- $\map F {a, b; c; 1} = \dfrac {\map \Gamma c \map \Gamma {c - a - b} } {\map \Gamma {c - a} \map \Gamma {c - b} }$
where:
- $\map F {a, b; c; 1}$ is the Gaussian hypergeometric function of $1$: $\ds \sum_{k \mathop = 0}^\infty \dfrac { a^{\overline k} b^{\overline k} } { c^{\overline k} } \dfrac {1^k} {k!}$
- $x^{\overline k}$ denotes the $k$th rising factorial power of $x$
- $\map \Gamma {n + 1} = n!$ is the Gamma function.
Corollary 1
Let $\map \Re {1 - a} > 0$.
Let $c \notin \Z_{\le 0}$ and $c \ne 1$.
Then:
- $\ds \sum_{k \mathop = 0}^\infty \dfrac {a^{\overline k} } {\paren {c - 1 + k} k!} = \dfrac {\map \Gamma {c - 1} \map \Gamma {1 - a} } {\map \Gamma {c - a} }$
Corollary 2
Let $\map \Re {a - 1} < 0$.
Then:
- $\ds \dfrac 1 a + \dfrac {a } {\paren {a + 1} 1!} + \dfrac {a \paren {a + 1} } {\paren {a + 2} 2!} + \dfrac {a \paren {a + 1} \paren {a + 2} } {\paren {a + 3} 3!} + \cdots = \dfrac {\pi} {\map \sin {\pi a } } $
Proof 1
Let $x, y, n \in \C$ be complex numbers such that $\map \Re {x + y + n + 1} > 0$.
Let $u \in \C$ be a complex number such that $\cmod u < 1$.
Expanding the product of $\paren {1 + u}^{y + n}$ and $\paren {\dfrac {1 + u} u}^x$:
\(\ds \paren {1 + u}^{y + n}\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \binom {y + n} k u^k\) | Binomial Theorem - Complex Numbers | |||||||||||
\(\ds \paren {1 + \dfrac 1 u}^x\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \binom x k u^{-k}\) | Binomial Theorem - Complex Numbers, Power of Product | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {1 + u}^{y + n} \paren {\dfrac {1 + u} u}^x\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \binom {y + n} k u^k \sum_{k \mathop = 0}^\infty \binom x k u^{-k}\) | multiplying |
The coefficient $a_n$ of $u^n$ of the product $\dfrac {\paren {1 + u}^{x + y + n} } {u^x}$ above can be determined by setting $k = k + n$ in the series with $\dbinom {y + n} k$:
\(\ds a_n\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \binom {y + n} {k + n} \binom x k\) | substituting $k = k + n$ in first series: $u^n = u^{k+n} u^{-k}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {\paren {y + n}!} {\paren {k + n}! \paren {y - k}!} \dfrac {x!} {k! \paren {x - k}!}\) | Definition of Binomial Coefficient | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac {\paren {y + n}!} {\paren {k + n}! \paren {y - k}!} \dfrac {x!} {k! \paren {x - k}!} \paren {\dfrac {n! y!} {n! y!} }\) | multiplying by $1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {y + n}! } {n! y!} \sum_{k \mathop = 0}^\infty \dfrac {n! } {k! \paren {k + n}! } \dfrac {y!} {\paren {y - k}!} \dfrac {x!} {\paren {x - k}!}\) | moving $\dfrac {\paren {y + n}! } {n! y!}$ outside the sum and rearranging | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\map \Gamma {y + n + 1} } {\map \Gamma {n + 1} \map \Gamma {y + 1} } \sum_{k \mathop = 0}^\infty \dfrac {n! } {k! \paren {k + n}! } \dfrac {y!} {\paren {y - k}!} \dfrac {k!} {k!} \dfrac {x!} {\paren {x - k}!} \dfrac {k!} {k!}\) | multiplying by $1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\map \Gamma {y + n + 1} } {\map \Gamma {n + 1} \map \Gamma {y + 1} } \sum_{k \mathop = 0}^\infty \dfrac {n! } {k! \paren {k + n}! } \dbinom y k \dbinom x k \paren {k!}^2\) | Definition of Binomial Coefficient | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\map \Gamma {y + n + 1} } {\map \Gamma {n + 1} \map \Gamma {y + 1} } \sum_{k \mathop = 0}^\infty \dfrac {n! } {k! \paren {k + n}! } \paren {-1}^k \dbinom {-y + k - 1} k \paren {-1}^k \dbinom {-x + k - 1} k \paren {k!}^2\) | Negated Upper Index of Binomial Coefficient | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\map \Gamma {y + n + 1} } {\map \Gamma {n + 1} \map \Gamma {y + 1} } \sum_{k \mathop = 0}^\infty \dfrac {n! } {k! \paren {k + n}! } \dfrac {\paren {-y + k - 1}!} {k! \paren {-y - 1}!} \dfrac {\paren {-x + k - 1}!} {k! \paren {-x - 1}!} \paren {k!}^2\) | Definition of Binomial Coefficient, $\paren {-1}^{2 k} = 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\map \Gamma {y + n + 1} } {\map \Gamma {n + 1} \map \Gamma {y + 1} } \sum_{k \mathop = 0}^\infty \dfrac { \paren {-x}^{\overline k} \paren {-y}^{\overline k} } { k! \paren {n + 1}^{\overline k} }\) | Rising Factorial as Quotient of Factorials, and $k!$ cancels |
Now expand $\paren {1 + u}^{x + y + n}$ and divide by $u^x$:
\(\ds \dfrac {\paren {1 + u}^{x + y + n} } {u^x}\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \binom {x + y + n} k u^{k - x}\) | Binomial Theorem - Complex Numbers |
The coefficient $a_n$ of $u^n$ of the product $\dfrac {\paren {1 + u}^{x + y + n} } {u^x}$ above is:
\(\ds a_n\) | \(=\) | \(\ds \binom {x + y + n} {x + n}\) | $n = k - x$, so $k = x + n$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\map \Gamma {x + y + n + 1} } {\map \Gamma {x + n + 1} \map \Gamma {y + 1} }\) | Definition of Binomial Coefficient |
Equating coefficients gives us:
\(\ds \dfrac {\map \Gamma {y + n + 1} } {\map \Gamma {n + 1} \map \Gamma {y + 1} } \sum_{k \mathop = 0}^\infty \dfrac { \paren {-x}^{\overline k} \paren {-y}^{\overline k} } {\paren {n + 1}^{\overline k} } \dfrac 1 {k!}\) | \(=\) | \(\ds \dfrac {\map \Gamma {x + y + n + 1} } {\map \Gamma {x + n + 1} \map \Gamma {y + 1} }\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{k \mathop = 0}^\infty \dfrac { \paren {-x}^{\overline k} \paren {-y}^{\overline k} } { \paren {n + 1}^{\overline k} } \dfrac 1 {k!}\) | \(=\) | \(\ds \dfrac {\map \Gamma {x + y + n + 1} \map \Gamma {n + 1} } {\map \Gamma {x + n + 1} \map \Gamma {y + n + 1} }\) | dividing both sides by $\dfrac {\map \Gamma {y + n + 1} } {\map \Gamma {n + 1} \map \Gamma {y + 1} }$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map F {-x, -y; n + 1; 1}\) | \(=\) | \(\ds \dfrac {\map \Gamma {x + y + n + 1} \map \Gamma {n + 1} } {\map \Gamma {x + n + 1} \map \Gamma {y + n + 1} }\) | Definition of Hypergeometric Function |
Letting $a = -x$, $b = -y$ and $c = n + 1$, we obtain:
\(\ds \map F {a, b; c; 1}\) | \(=\) | \(\ds \dfrac {\map \Gamma c \map \Gamma {c - a - b} } {\map \Gamma {c - a} \map \Gamma {c - b} }\) |
$\blacksquare$
Proof 2
From Euler's Integral Representation of Hypergeometric Function, we have:
- $\ds \map F {a, b; c; x} = \dfrac {\map \Gamma c } {\map \Gamma b \map \Gamma {c - b} } \int_0^1 t^{b - 1} \paren {1 - t}^{c - b - 1} \paren {1 - x t}^{- a} \rd t$
Where $a, b, c \in \C$.
and $\size x < 1$
and $\map \Re c > \map \Re b > 0$.
Since Euler's Integral Representation only applies where $\size x < 1$, we will determine the limit of the integral as $x \to 1$.
Therefore:
\(\ds \map F {a, b; c; x}\) | \(=\) | \(\ds \dfrac {\map \Gamma c } {\map \Gamma b \map \Gamma {c - b} } \int_0^1 t^{b - 1} \paren {1 - t}^{c - b - 1} \paren {1 - \paren {1} t}^{- a} \rd t\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \) | \(=\) | \(\ds \dfrac {\map \Gamma c } {\map \Gamma b \map \Gamma {c - b} } \int_0^1 t^{b - 1} \paren {1 - t}^{c - b - a - 1} \rd t\) | simplifying and Product of Powers | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \) | \(=\) | \(\ds \dfrac {\map \Gamma c } {\map \Gamma b \map \Gamma {c - b} } \dfrac {\map \Gamma b \map \Gamma {c - a - b } } {\map \Gamma {c - a } }\) | Definition of Beta Function | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \) | \(=\) | \(\ds \dfrac {\map \Gamma c \map \Gamma {c - a - b} } {\map \Gamma {c - a} \map \Gamma {c - b} }\) | simplifying and canceling $\map \Gamma b$ |
$\blacksquare$
Examples
Example: $\map F {1, 2; 4; 1}$
- $1 + \dfrac 2 4 + \paren {\dfrac {2 \times 3} {4 \times 5} } + \paren {\dfrac {2 \times 3 \times 4} {4 \times 5 \times 6} } + \cdots = 3$
Example: $\map F {1, 1; \dfrac 5 2; 1}$
- $1 + \dfrac 2 5 + \paren {\dfrac {2 \times 4} {5 \times 7} } + \paren {\dfrac {2 \times 4 \times 6} {5 \times 7 \times 9} } + \cdots = 3$
Example: $\map F {\dfrac 1 2, \dfrac 1 2; \dfrac 3 2; 1}$
- $1 + \paren {\dfrac 1 {2^1 \times 3 \times 1!} } + \paren {\dfrac {1 \times 3} {2^2 \times 5 \times 2!} } + \paren {\dfrac {1 \times 3 \times 5} {2^3 \times 7 \times 3!} } + \cdots = \dfrac \pi 2$
Example: $\dfrac {10} 3 \map F {\dfrac 3 {10}, \dfrac 3 {10}; \dfrac {13} {10}; 1}$
- $\paren {\dfrac 1 {10^{-1} \times 3 \times 0!} } + \paren {\dfrac 3 {10^0 \times 13 \times 1!} } + \paren {\dfrac {3 \times 13} {10^1 \times 23 \times 2!} } + \paren {\dfrac {3 \times 13 \times 23} {10^2 \times 33 \times 3!} } + \cdots = \dfrac {2 \pi} \phi$
Also see
- Dixon's Hypergeometric Theorem
- Kummer's Hypergeometric Theorem
- Properties of Generalized Hypergeometric Function
Source of Name
This entry was named for Carl Friedrich Gauss.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 31$: Hypergeometric Functions: Miscellaneous Properties: $31.14$
- 1989: Bruce C. Berndt: Ramanujan's Notebooks: Part II: Chapter $\text {10}$. Hypergeometric Series: $\text I$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 32$: Hypergeometric Functions: Miscellaneous Properties: $32.14.$
- Weisstein, Eric W. "Gauss's Hypergeometric Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GausssHypergeometricTheorem.html